Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 159(2)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37428065

RESUMO

Tensor algebra operations such as contractions in computational chemistry consume a significant fraction of the computing time on large-scale computing platforms. The widespread use of tensor contractions between large multi-dimensional tensors in describing electronic structure theory has motivated the development of multiple tensor algebra frameworks targeting heterogeneous computing platforms. In this paper, we present Tensor Algebra for Many-body Methods (TAMM), a framework for productive and performance-portable development of scalable computational chemistry methods. TAMM decouples the specification of the computation from the execution of these operations on available high-performance computing systems. With this design choice, the scientific application developers (domain scientists) can focus on the algorithmic requirements using the tensor algebra interface provided by TAMM, whereas high-performance computing developers can direct their attention to various optimizations on the underlying constructs, such as efficient data distribution, optimized scheduling algorithms, and efficient use of intra-node resources (e.g., graphics processing units). The modular structure of TAMM allows it to support different hardware architectures and incorporate new algorithmic advances. We describe the TAMM framework and our approach to the sustainable development of scalable ground- and excited-state electronic structure methods. We present case studies highlighting the ease of use, including the performance and productivity gains compared to other frameworks.

2.
Nat Commun ; 12(1): 546, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483513

RESUMO

Isotopes of heavier gases including carbon (13C/14C), nitrogen (13N), and oxygen (18O) are highly important because they can be substituted for naturally occurring atoms without significantly perturbing the biochemical properties of the radiolabelled parent molecules. These labelled molecules are employed in clinical radiopharmaceuticals, in studies of brain disease and as imaging probes for advanced medical imaging techniques such as positron-emission tomography (PET). Established distillation-based isotope gas separation methods have a separation factor (S) below 1.05 and incur very high operating costs due to high energy consumption and long processing times, highlighting the need for new separation technologies. Here, we show a rapid and highly selective adsorption-based separation of 18O2 from 16O2 with S above 60 using nanoporous adsorbents operating near the boiling point of methane (112 K), which is accessible through cryogenic liquefied-natural-gas technology. A collective-nuclear-quantum effect difference between the ordered 18O2 and 16O2 molecular assemblies confined in subnanometer pores can explain the observed equilibrium separation and is applicable to other isotopic gases.

3.
J Phys Chem Lett ; 10(3): 518-523, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30649884

RESUMO

We predict that graphane functionalized with hydroxyl groups, hydroxygraphane, can conduct protons in the complete absence of water, as shown from density functional theory calculations. Hydroxygraphane's anhydrous intrinsic proton conductivity results from the self-assembling two-dimensional network of hydrogen bonds on its surface. We show that the proton conduction occurs through a Grotthuss-like mechanism, as protons hop between neighboring hydroxyl groups, aided by their rotation. Our calculations predict that hydroxygraphane has a direct bandgap of 3.43 eV, a phonon dispersion spectrum with no instabilities, and a 2-D Young's modulus and Poisson's ratio stiffer than those for graphane-the parent material for hydroxygraphane. Hence, hydroxygraphane has the desired electronic and mechanical properties to make it a viable candidate for a proton exchange membrane material capable of operating under anhydrous or low-humidity conditions.

4.
5.
Phys Rev Lett ; 118(18): 186101, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28524689

RESUMO

Graphane functionalized with hydroxyl groups is shown to rapidly conduct protons under anhydrous conditions through a contiguous network of hydrogen bonds. Density functional theory calculations predict remarkably low barriers to diffusion of protons along a 1D chain of surface hydroxyls. Diffusion is controlled by the local rotation of hydroxyl groups, a mechanism that is very different from that found in 1D water wires in confined nanopores or in bulk water. The proton mean square displacement in the 1D chain was observed to follow Fickian diffusion rather than the expected single-file mobility. A charge analysis reveals that the charge on the proton is essentially equally shared by all hydrogens bound to oxygens, effectively delocalizing the proton.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...